## **Probability of Default (PD) Model Development**

University of Texas @ Dallas, FTEC 6334 (Fall 2020)

**Rounok Joardar, Hamesh Alcendor** 

#### Outline

<u>Project Goal</u>: Create an effective Probability of Default (PD) model using ML techniques <u>Stretch Goal</u>: Does probability of default decrease if per period payment is reduced?

- Data description
- Exploratory Data Analysis (EDA) and data preparation
- Feature engineering
- Model building and evaluation
- Model interpretation
- Summary

#### **Dataset: Loan Application and Default Info**



Behavioral data

- Behavioral data
- Behavioral data

- Behavioral data
- Dataset provided by an organization called Home Credit, "a global platform which centrally manages core strategy, technology, risk, product and funding functions for consumer finance operations"
- Target data is highly asymmetrical 8% ones, 92% zeros

### **Exploratory Data Analysis**



- Distribution of each of the features was explored to check for data quality
- As expected, much of the data was left skewed
- Some features had to be further cleaned before they could be used



## **Exploratory Data Analysis**



Many of the features are missing data for over half the applicants



- Less than 10% of the applicants default on their loans
- This will need to be addressed when splitting the train/test data

## **Data Preparation and Feature Selection**



ROC-AUC scores

### **Data Preparation and Initial Feature Selection**



#### **Feature Engineering**

**Purpose**: Improve predictive power of ML models by introducing novel features

- Weight of Evidence and Information Value
- Include supplementary data available in credit bureau reports + clients previous application history
  - Example: number of previous loans taken out
- Append statistics such as mean/max/min/sum of supplemental information (aggregations)
- Add new features based on simple logic
- Eliminate highly correlated features

### Weight of Evidence (WoE) and Information Value (IV)

**AMT\_INCOME\_TOTAL**: array(2.565e+04, 1.170e+05, 1.800e+05, 1.170e+08), **AMT\_CREDIT:** array( 45000., 337500., 679500., 4050000.), **AMT\_ANNUITY**: array(1615.5, 19552.5, 30717., 258025.5), AMT\_GOODS\_PRICE: array( 40500., 292500., 675000., 4050000.), **EXT\_SOURCE\_1**: array(0.01456813, 0.39241613, 0.61765109, 0.96269277), **EXT\_SOURCE\_2**: array(8.17361652e-08, 4.66980758e-01, 6.33707415e-01, 8.54999666e-01), **EXT\_SOURCE\_3**: array(5.27265239e-04, 4.31191798e-01, 6.26304277e-01, 8.96009549e-01), AGE: array(21., 37., 50., 69.), **YEARS\_EMPLOYED:** array(0., 2., 6., 49.), **EDUCATION\_TYPE\_**Higher education: array(0., 1.), **EDUCATION\_TYPE\_**Incomplete higher: array(0., 1.), **EDUCATION\_TYPE**\_Lower secondary: array(0., 1.), **EDUCATION\_TYPE**\_Secondary / secondary special: array(0., 1.), **HOUSING\_TYPE**\_House / apartment: array(0., 1.), **HOUSING\_TYPE\_**Municipal apartment: array(0., 1.), **HOUSING\_TYPE**\_Office apartment: array(0., 1.), **HOUSING\_TYPE**\_Rented apartment: array(0., 1.), **HOUSING\_TYPE\_**with parents: array(0., 1.), **OWN\_CAR**Y: array(0., 1.), **OWN\_REALTY\_**Y: array(0., 1.)}

| Variable_Name |             | Category             |     | WOE       | DE Information_Valu |          |
|---------------|-------------|----------------------|-----|-----------|---------------------|----------|
| 0             | AGE         | (20.999, 37.0        |     | 0.301379  |                     | 0.075482 |
| 1             | AGE         | (37.0, 50.0          |     | -0.035757 | Merce               | 0.075482 |
| 2             | AGE         | (50.0, 69.0          |     | -0.377744 | ↓ morge             | 0.075482 |
|               |             |                      |     |           |                     |          |
| 3             | AMT_ANNUITY | (1615.499, 19552.5   |     | -0.064670 |                     | 0.006762 |
| 4             | AMT_ANNUITY | (19552.5, 30717.0    |     | 0.112013  |                     | 0.006762 |
| 5             | AMT_ANNUITY | (30717.0, 258025.5   |     | -0.055877 |                     | 0.006762 |
|               |             |                      |     |           |                     |          |
| 6             | AMT_CREDIT  | (44999.999, 337500.0 |     | -0.044895 | Marga               | 0.031568 |
| 7             | AMT_CREDIT  | (337500.0, 679500.0  |     | 0.217496  | ↓ Merge             | 0.031568 |
| 8             | AMT_CREDIT  | (679500.0, 4050000.0 |     | -0.212747 |                     | 0.031568 |
| U             |             | (07550010, 105000010 | ••• | 0.2127.17 |                     | 0.031900 |

- Used for optimal binning of numerical features
- Helps with feature selection •
- Commonly used in credit industry
- **Regulatory concerns**

Numerical features broken into bins

Bins with small WoE merged bins

adjacent

with

WoE = log 
$$\left[ \frac{\text{Relative frequency of 1s}}{\text{Relative frequency of 0s}} \right]$$
  
IV = WoE ×  $\sum \left[ \text{Distrib(1s) - Distrib(0s)} \right]$ 

#### Credit Bureau data (aggregations)

| DAYS_CREDIT            | min, max, mean, var |  |
|------------------------|---------------------|--|
| DAYS_CREDIT_ENDDATE    | min, max, mean      |  |
| DAYS_CREDIT_UPDATE     | mean                |  |
| CREDIT_DAY_OVERDUE     | max, mean           |  |
| AMT_CREDIT_MAX_OVERDUE | mean                |  |
| AMT_CREDIT_SUM         | max, mean, sum      |  |
| AMT_CREDIT_SUM_DEBT    | max, mean, sum      |  |
| AMT_CREDIT_SUM_OVERDUE | mean                |  |
| AMT_CREDIT_SUM_LIMIT   | mean, sum           |  |
| AMT_ANNUITY            | max, mean           |  |
| CNT_CREDIT_PROLONG     | sum                 |  |
| MONTHS_BALANCE_MIN     | min                 |  |
| MONTHS_BALANCE_MAX     | max                 |  |
| MONTHS_BALANCE_SIZE    | mean, sum           |  |

#### Installment pymt data (aggregations)

| NUM_INSTALMENT_VERSION | nunique             |  |
|------------------------|---------------------|--|
| DPD                    | max, mean, sum      |  |
| DBD                    | max, mean, sum      |  |
| PAYMENT_PERC           | max, mean, sum, var |  |
| PAYMENT_DIFF           | max, mean, sum, var |  |
| AMT_INSTALMENT         | max, mean, sum      |  |
| AMT_PAYMENT            | min, max, mean, sum |  |
| DAYS_ENTRY_PAYMENT     | max, mean, sum      |  |

#### New features added DAYS EMPLOYED RATIO DAYS\_EMPLOYED / DAYS\_BIRTH (Age) INCOME\_CREDIT\_RATIO AMT\_INCOME\_TOTAL / AMT\_CREDIT AMT INCOME TOTAL/CNT FAM MEMBERS INCOME PER PERSON AMT\_ANNUITY / AMT\_INCOME\_TOTAL ANNUITY\_INCOME\_RATIO AMT ANNUITY / AMT CREDIT

#### 119 new features added (total 798 columns after one-hot encoding of categorical features)

PAYMENT RATE

#### Previous applications data (aggregations)

| AMT_ANNUITY             | min, max, mean      |
|-------------------------|---------------------|
| AMT_APPLICATION         | min, max, mean      |
| AMT_CREDIT              | min, max, mean      |
| APP_CREDIT_PERC         | min, max, mean, var |
| AMT_DOWN_PAYMENT        | min, max, mean      |
| AMT_GOODS_PRICE         | min, max, mean      |
| HOUR_APPR_PROCESS_START | min, max, mean      |
| RATE_DOWN_PAYMENT       | min, max, mean      |
| DAYS_DECISION           | min, max, mean      |
| CNT_PAYMENT             | mean, sum           |
|                         |                     |

## **Modeling – Setup**

- Classifiers used in this project:
  - Logistic regression (starting baseline)
  - Light Gradient Boosting (LGBM)
  - Extreme Gradient Boosting (XGBM)
  - Neural Network
- k-fold cross-validation used to measure and validate model quality (k = 10)
- Ensemble model and neural network model
  hyperparameters tuned using grid-search
  - Limited search range and reduced dataset size to conserve time
- ROC-AUC score used as quality metric



#### **Modeling Results – Logistic Regression**



- Simple logistic regression model built as a starting baseline
- Used "top 25" features determined in previous stage – no feature engineering
- WoE used to classify numerical features
- 10-fold cross-validation used to validate model

classifier = LogisticRegression(solver='lbfgs', C=1e5, max\_iter=500, random\_state=37)



Results from 10-fold cross-validation

= 8

#### • Hyperparameter values used:

- n\_estimators = 10000
  - learning\_rate = 0.02
  - num\_leaves = 34
  - subsample = 0.9
  - max\_depth
- min\_child\_weight = 40
- Top 40 features mostly from newly engineered features
- AUC score = 0.791635 (0.0059)

#### **Modeling Results – XGBoost**



Results from 10-fold cross-validation

= 8

#### • Hyperparameter values used:

- n\_estimators = 10000
- learning\_rate = 0.02
- num\_leaves = 34
- subsample = 0.9
- max\_depth
- min\_child\_weight = 40
- Top 40 features mostly from newly engineered features
- AUC score = 0.793355 (0.0057)

# **Modeling Results – Neural Network**



- Used 3 fully connected hidden layers with 20 nodes per layer in final model
  - Smaller network (2 hidden layers, 6 nodes each) used for parameter tuning
  - Search grid consisted of 81 points, 5-fold cv search took 9 hours!
- Results:
  - AUC (train) = 0.737886 (σ = 0.0067)
  - AUC (test) = 0.741067 ( $\sigma$  = 0.0053)

## **Modeling Results – Summary**

| Model          | Type of feature<br>engineering | Number of new features | Execution time (min) | AUC-ROC Score |
|----------------|--------------------------------|------------------------|----------------------|---------------|
| Logistic       | WoE, IV                        | 0                      | < 1                  | 0.73          |
| LGBM           | New, Aggregation               | 119                    | 28.5                 | 0.791635      |
| XGBoost        | New, Aggregation               | 119                    | 390                  | 0.793355      |
| Neural Network | New, Aggregation               | 119                    | 31.2                 | 0.741067      |





https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost

## Model Interpretability – LGBM SHAP Values



- Impact of predictor (i.e. features) on target assessed using SHAP values
- Variable importance plot obtained from LGBM model matches well with feature importance characteristic
  - 15 out of top 20 are common to both characteristics (compare with slide 13)

# Model Interpretability – XGBoost SHAP Values



- Impact of predictor (i.e. features) on target assessed using SHAP values
- Variable importance plot obtained from XGBoost model matches well with feature importance characteristic
  - 15 out of top 20 are common to both characteristics (compare with slide 14)

## Model Interpretability – Neural Network Model SHAP Values



- Impact of predictor (i.e. features) on target assessed using SHAP values
- Variable importance plot obtained from Neural Network model matches well with corresponding characteristics from LGBM and XGBoost models
  - 11 of top 20 features in common with XGBoost
  - 10 of top 20 features in common with LGBM

#### **Annuity Amount – PD Sensitivity**



- SHAP partial dependence plot shows the marginal effect of one feature on the predicted outcome
- If annuity amount can be reduced below 50K, default probability goes down

#### **Payment Rate – PD Sensitivity**



 SHAP partial dependence plot shows weak marginal effect of payment rate on probability of default

#### **Summary**

- Three types of ML models were built to predict probability of default based on a dataset provided by Home Credit
- XGBoost reached the highest AUC score but took longest training time
- Neural network model had lowest AUC score
- LGBM took the shortest training time
- SHAP analysis was performed to demostrate interpretability of the models
- All 3 models showed similar feature importance
- New engineered features had a large influence on model accuracy
- Credit default rate was shown to have high sensitivity to annuity amount

#### Thank you!