
Probability of Default (PD) Model Development

University of Texas @ Dallas, FTEC 6334 (Fall 2020)

Rounok Joardar, Hamesh Alcendor

Project Goal: Create an effective Probability of Default (PD) model using ML techniques

Stretch Goal: Does probability of default decrease if per period payment is reduced?

• Data description

• Exploratory Data Analysis (EDA) and data preparation

• Feature engineering

• Model building and evaluation

• Model interpretation

• Summary

Outline

Dataset: Loan Application and Default Info

• Dataset provided by an organization called Home Credit, “a global platform which centrally manages core strategy, technology, risk,

product and funding functions for consumer finance operations”

• Target data is highly asymmetrical – 8% ones, 92% zeros

MAIN DATASET (application.csv)

• Contains detailed application information about clients

• Target column is defined as: 1 = client with payment difficulties, 0 = all other cases

• 307,511 rows – one row per client

• 120 columns – one column per feature

CREDIT BUREAU DATA (bureau.csv)

• Application information about clients

previous loans from other institutions

• 1,716,428 rows, 17 columns

PREVIOUS LOAN DATA (bureau.csv)

• Status information about clients previous

loans from this loan provider (Home Credit)

• 1,670,214 rows, 37 columns

CUSTOMER_ID_# CUSTOMER_ID_#

Bureau_balance.csv

• Monthly credit balance

• Behavioral data

POS_CASH_balance.csv

• Monthly balance of previous loans

• Behavioral data

Installment_payments.csv

• Past payment data per installment

• Behavioral data

Credit_card_balance.csv

• Monthly balance of previous credit card loans

• Behavioral data

Exploratory Data Analysis

• Distribution of each of the features was

explored to check for data quality

• As expected, much of the data was left

skewed

• Some features had to be further cleaned

before they could be used

remove

outliers

Exploratory Data Analysis

• Less than 10% of the applicants default on

their loans

• This will need to be addressed when splitting

the train/test data

• Many of the features are missing data for over half the applicants

Data Preparation and Feature Selection

Drop features with more than

25% missing values

Split data into train/test

subsets (80/20)

Create dummy variables for

categorical features

Perform imputation to fill in

remaining missing values

• Run classifier (XGBM)

• Perform predictions

• View feature importances

• Select top 25 features

• Create model and predict

using reduced feature set

• Compare before vs after

ROC-AUC scores

dataIn.dropna(thresh=0.25*len(dataIn), axis=1)

for col in proc_df.dtypesdataIn.dtypes == object.index:

 make_my_dummy = dataIn.pop(col)

 tempDummy = pd.get_dummies(make_my_dummy, prefix=col5:)

 tempDummy.drop(tempDummy.columns0, axis=1, inplace=True)

 dataIn = pd.concat(dataIn, tempDummy, axis=1)

X_train, X_test, y_train, y_test =

 train_test_split(X, y, stratify=y, test_size=0.2,

 random_state=37)

num_transformer = Pipeline(steps=(imputer,

 SimpleImputer(strategy=median)),

 (scaler, StandardScaler()))

clf = XGBClassifier(max_depth=maxDepth, learning_rate=learnRate,

n_estimators=numTrees, min_child_weight=childWt, scale_pos_weight=1,

random_state=33)

clf = clf.fit(X_train, y_train)

y_test_score = clf.predict_proba(X_test):, 1

testScore = roc_auc_score(y_test, y_test_score)

Data Preparation and Initial Feature Selection

Drop features with more than

25% missing values

Split data into train/test

subsets (80/20)

Create dummy variables for

categorical features

Perform imputation to fill in

remaining missing values

• Run classifier (XGBM)

• Perform predictions

• View feature importances

• Select top 25 features

• Create model and predict

using reduced feature set

• Compare before vs after

ROC-AUC scores

120 features reduced to 105

105 features reduced to 25

AUC score with all 120 features: 0.7557

AUC score with top 25 features: 0.7452

Feature Engineering

Purpose: Improve predictive power of ML models by introducing novel features

• Weight of Evidence and Information Value

• Include supplementary data available in credit bureau reports + clients previous application history

• Example: number of previous loans taken out

• Append statistics such as mean/max/min/sum of supplemental information (aggregations)

• Add new features based on simple logic

• Eliminate highly correlated features

Weight of Evidence (WoE) and Information Value (IV)

AMT_INCOME_TOTAL: array(2.565e+04, 1.170e+05, 1.800e+05, 1.170e+08),
AMT_CREDIT: array(45000., 337500., 679500., 4050000.),
AMT_ANNUITY: array(1615.5, 19552.5, 30717. , 258025.5),
AMT_GOODS_PRICE: array(40500., 292500., 675000., 4050000.),
EXT_SOURCE_1: array(0.01456813, 0.39241613, 0.61765109, 0.96269277),
EXT_SOURCE_2: array(8.17361652e-08, 4.66980758e-01, 6.33707415e-01, 8.54999666e-01),
EXT_SOURCE_3: array(5.27265239e-04, 4.31191798e-01, 6.26304277e-01, 8.96009549e-01),
AGE: array(21., 37., 50., 69.),
YEARS_EMPLOYED: array(0., 2., 6., 49.),
EDUCATION_TYPE_Higher education: array(0., 1.),
EDUCATION_TYPE_Incomplete higher: array(0., 1.),
EDUCATION_TYPE_Lower secondary: array(0., 1.),
EDUCATION_TYPE_Secondary / secondary special: array(0., 1.),
HOUSING_TYPE_House / apartment: array(0., 1.),
HOUSING_TYPE_Municipal apartment: array(0., 1.),
HOUSING_TYPE_Office apartment: array(0., 1.),
HOUSING_TYPE_Rented apartment: array(0., 1.),
HOUSING_TYPE_With parents: array(0., 1.),
OWN_CAR_Y: array(0., 1.),
OWN_REALTY_Y: array(0., 1.)}

 Variable_Name Category ... WOE Information_Value
0 AGE (20.999, 37.0 ... 0.301379 0.075482
1 AGE (37.0, 50.0 ... -0.035757 0.075482
2 AGE (50.0, 69.0 ... -0.377744 0.075482

3 AMT_ANNUITY (1615.499, 19552.5 ... -0.064670 0.006762
4 AMT_ANNUITY (19552.5, 30717.0 ... 0.112013 0.006762
5 AMT_ANNUITY (30717.0, 258025.5 ... -0.055877 0.006762

6 AMT_CREDIT (44999.999, 337500.0 ... -0.044895 0.031568
7 AMT_CREDIT (337500.0, 679500.0 ... 0.217496 0.031568
8 AMT_CREDIT (679500.0, 4050000.0 ... -0.212747 0.031568

N
u
m

e
ri
c
a

l
fe

a
tu

re
s

b
ro

k
e

n
 i
n
to

 b
in

s

Merge

Merge

B
in

s
 w

it
h

 s
m

a
ll

W
o

E
 m

e
rg

e
d

w
it
h

 a
d

ja
c
e

n
t
b

in
s

• Used for optimal binning of

numerical features

• Helps with feature selection

• Commonly used in credit industry

• Regulatory concerns

WoE = log
Relative frequency of 1s

Relative frequency of 0s

 Distrib(1s) – Distrib(0s) IV = WoE ×

Feature Engineered Data

Credit Bureau data (aggregations)

DAYS_CREDIT min, max, mean, var

DAYS_CREDIT_ENDDATE min, max, mean

DAYS_CREDIT_UPDATE mean

CREDIT_DAY_OVERDUE max, mean

AMT_CREDIT_MAX_OVERDUE mean

AMT_CREDIT_SUM max, mean, sum

AMT_CREDIT_SUM_DEBT max, mean, sum

AMT_CREDIT_SUM_OVERDUE mean

AMT_CREDIT_SUM_LIMIT mean, sum

AMT_ANNUITY max, mean

CNT_CREDIT_PROLONG sum

MONTHS_BALANCE_MIN min

MONTHS_BALANCE_MAX max

MONTHS_BALANCE_SIZE mean, sum

Previous applications data (aggregations)

AMT_ANNUITY min, max, mean

AMT_APPLICATION min, max, mean

AMT_CREDIT min, max, mean

APP_CREDIT_PERC min, max, mean, var

AMT_DOWN_PAYMENT min, max, mean

AMT_GOODS_PRICE min, max, mean

HOUR_APPR_PROCESS_START min, max, mean

RATE_DOWN_PAYMENT min, max, mean

DAYS_DECISION min, max, mean

CNT_PAYMENT mean, sum

NUM_INSTALMENT_VERSION nunique

DPD max, mean, sum

DBD max, mean, sum

PAYMENT_PERC max, mean, sum, var

PAYMENT_DIFF max, mean, sum, var

AMT_INSTALMENT max, mean, sum

AMT_PAYMENT min, max, mean, sum

DAYS_ENTRY_PAYMENT max, mean, sum

Installment pymt data (aggregations)

New features added

DAYS_EMPLOYED_RATIO DAYS_EMPLOYED / DAYS_BIRTH (Age)

INCOME_CREDIT_RATIO AMT_INCOME_TOTAL / AMT_CREDIT

INCOME_PER_PERSON AMT_INCOME_TOTAL / CNT_FAM_MEMBERS

ANNUITY_INCOME_RATIO AMT_ANNUITY / AMT_INCOME_TOTAL

PAYMENT_RATE AMT_ANNUITY / AMT_CREDIT

119 new features added (total 798 columns after one-hot encoding of categorical features)

Modeling – Setup

• Classifiers used in this project:

• Logistic regression (starting baseline)

• Light Gradient Boosting (LGBM)

• Extreme Gradient Boosting (XGBM)

• Neural Network

• k-fold cross-validation used to measure and validate

model quality (k = 10)

• Ensemble model and neural network model

hyperparameters tuned using grid-search

• Limited search range and reduced dataset size to

conserve time

• ROC-AUC score used as quality metric

gridSearch = GridSearchCV(estimator=model, param_grid=param_grid, cv=StratifiedKFold(numFolds), scoring='roc_auc', verbose=100)

Modeling Results – Logistic Regression

• Simple logistic regression model

built as a starting baseline

• Used “top 25” features determined in

previous stage – no feature

engineering

• WoE used to classify numerical

features

• 10-fold cross-validation used to

validate model

classifier = LogisticRegression(solver='lbfgs', C=1e5, max_iter=500, random_state=37)

Modeling Results – LGBM

• Results from 10-fold cross-validation

• Hyperparameter values used:
• n_estimators = 10000
• learning_rate = 0.02
• num_leaves = 34
• subsample = 0.9
• max_depth = 8
• min_child_weight = 40

• Top 40 features mostly from newly

engineered features

• AUC score = 0.791635 (0.0059)

Modeling Results – XGBoost

• Results from 10-fold cross-validation

• Hyperparameter values used:
• n_estimators = 10000
• learning_rate = 0.02
• num_leaves = 34
• subsample = 0.9
• max_depth = 8
• min_child_weight = 40

• Top 40 features mostly from newly

engineered features

• AUC score = 0.793355 (0.0057)

Modeling Results – Neural Network

• Used 3 fully connected hidden layers with 20 nodes per layer in final model

• Smaller network (2 hidden layers, 6 nodes each) used for parameter tuning

• Search grid consisted of 81 points, 5-fold cv search took 9 hours!

• Results:

• AUC (train) = 0.737886 (s = 0.0067)

• AUC (test) = 0.741067 (s = 0.0053)

learning rate = 0.001
batch_size = 30
epochs = 30
dropout_rate = 0

Modeling Results – Summary

Model
Type of feature

engineering
Number of new features Execution time (min) AUC-ROC Score

Logistic WoE, IV 0 < 1 0.73

LGBM New, Aggregation 119 28.5 0.791635

XGBoost New, Aggregation 119 390 0.793355

Neural Network New, Aggregation 119 31.2 0.741067

Level-wise growth in XGBOOST

Leaf-wise growth in XGBOOST

X
G

B
o

o
s
t

L
ig

h
t

G
B

M

https://www.analyticsvidhya.com/blog/2017/06/which-algorithm-takes-the-crown-light-gbm-vs-xgboost

Model Interpretability – LGBM SHAP Values

• Impact of predictor (i.e. features) on target assessed using SHAP values

• Variable importance plot obtained from LGBM model matches well with feature importance

characteristic

• 15 out of top 20 are common to both characteristics (compare with slide 13)

Model Interpretability – XGBoost SHAP Values

• Impact of predictor (i.e. features) on target assessed using SHAP values

• Variable importance plot obtained from XGBoost model matches well with feature

importance characteristic

• 15 out of top 20 are common to both characteristics (compare with slide 14)

Model Interpretability – Neural Network Model SHAP Values

• Impact of predictor (i.e. features) on target assessed using SHAP values

• Variable importance plot obtained from Neural Network model matches well with

corresponding characteristics from LGBM and XGBoost models

• 11 of top 20 features in common with XGBoost

• 10 of top 20 features in common with LGBM

Annuity Amount – PD Sensitivity

• SHAP partial dependence plot shows the marginal effect of one feature on the

predicted outcome

• If annuity amount can be reduced below 50K, default probability goes down

Payment Rate – PD Sensitivity

• SHAP partial dependence plot shows weak marginal effect of payment rate on

probability of default

Summary

• Three types of ML models were built to predict probability of default based on a dataset

provided by Home Credit

• XGBoost reached the highest AUC score but took longest training time

• Neural network model had lowest AUC score

• LGBM took the shortest training time

• SHAP analysis was performed to demostrate interpretability of the models

• All 3 models showed similar feature importance

• New engineered features had a large influence on model accuracy

• Credit default rate was shown to have high sensitivity to annuity amount

Thank you!

