
Etherlux: A Novel Internet 
Connected Power Outlet 

 
 

Rounok Joardar © 
 



• A novel internet connected power outlet that can be 
controlled over the worldwide web has been developed 
 

• The system uses a Raspberry Pi and simple digital circuitry 
 

• The following slides describe in detail the internal workings 
of the system 
 

• The main distinguishing features of this design are: 
• ability to control outlets well beyond simple on/off 

operations (e.g. timed on/off, duty cycle control, complementary 

behavior, etc. etc.) 

• low cost compared to similar units available today 
• easy upgrades to increase scale 
• robust peformance 

 
• DIY enthusiasts can view detailed step-by-step construction 

process by visiting http://www.rounok.com 

Introduction 



Concept 

Vdd (5V) 

Relay 
coil 

1
2

0
V

 m
ain

s 

Web Page 
 

• Point to Raspberry Pi's URL 
• Click on button to send 

php request via internet to 
web server running on 
Raspberry Pi 

Raspberry Pi 
 

• Running Apache webserver 
• Php request executes a 

local Python code 
• Python code generates a 

specific digital waveform 
each time it is run 

• Each button press on web 
page will run the python 
code one time 

Digital Circuit 
 

• Logic circuit 
processes input 
signal and outputs a 
high or low 

10011... 

Gnd 

G
 P

 I 
O

 1/0 



Clock signal (from Pi) 

Flip flop output at Q 
(positive edge trig'd) 

Simple Implementation of Concept 

Raspberry Pi 
• Python code (pulse.py) 

generates a single pulse each 
time it is run. Each button 
press on web page will run 
the python code one time 

Vdd (5V) 

Q' 

Q 

JK flip flop configured to toggle 
output every time a pulse 
appears at its clock terminal 

Relay 
coil 

Gnd 

1
2

0
V

 m
ain

s 

Web Page 

CLK 

J 

K! 

Vcc 

Gnd 

Pre! 

Clr! 

Texas Instruments 
SN74HC109 +ve Edge 
Triggered J-K Flip-Flop 



JK F/F #2 

Clk 

JK F/F #3 

Clk 

JK F/F #1 

Clk 4.7K 4.7K 4.7K 

Pull-down resistors 

Implementation Details 

• Designed for 3 controlled outlets and one "always on" outlet 
• GPIO ports 4, 17, and 27 are used 
• Each port is connected to clock pin of a JK flip flop 
• Pull-down resistors are used at GPIO ports to stabilize signals 



Coding Details 

• Apache webserver installed and running on Raspberry Pi 
• This is the simple html code that is present in the 

/var/www directory on the Raspberry Pi (file = lights.html) 
• Sends request to the webserver to run php file 

"runPython.php" with the value "port04" or "port17" or 
"port27" depending on which outlet the user chooses to 
toggle 

<html> 

<body> 

<form action="runPython.php" method="post"> 

<input type="checkbox" name="lightNum[]" value="port04">Light01 

<br> 

<input type="checkbox" name="lightNum[]" value="port17">Light02 

<br> 

<input type="checkbox" name="lightNum[]" value="port27">Light03 

<br> 

<br> 

<input type=submit value="Continue"> 

</form> 

</body> 

</html> 



Coding Details (contd..) 

• This is the php code that is present in the /var/www 
directory on the Raspberry Pi (file = runPython.php) 

• Upon receiving request from the internet the webserver 
runs this file 

• The php code in turn executes a Python script named 
"pulseGen.py" with the value "port04" or "port17" or 
"port27" depending on which outlet the user chose to 
toggle 

<?php 

header ('refresh:10; url=lights.html'); 

 

echo 'Light toggled at: ' . date('Y-m-d H:i:s'); 

echo '<br>'; 

foreach($_POST['lightNum'] as $key => $value){ 

    $item = $_POST['lightNum'][$key]; 

    echo 'Now toggling ' . $item; 

    echo '<br>'; 

    exec('sudo python pulseGen.py ' . $item); 

    echo 'Done. <br>'; 

} 

echo '<br>Please wait. Redirecting to main page'; 

/* exec('sudo python pulseGen.py'); */ 

 

?> 



Coding Details (contd..) 

• This is the Python code that is 
present in the /var/www 
directory on the Raspberry Pi 
(file = pulseGen.py) 
 

• When the php code executes 
this Python script, the GPIO 
output at "port04" or 
"port17" or "port27" is 
toggled, depending on which 
outlet the user chose 

import RPi.GPIO as GPIO 

from time import sleep 

import sys 

 

GPIO.setmode( GPIO.BOARD ) 

GPIO.setup( 4 , GPIO.OUT ) 

GPIO.setup( 17 , GPIO.OUT ) 

GPIO.setup( 27 , GPIO.OUT ) 

GPIO.output( 4, False) 

GPIO.output( 17, False) 

GPIO.output( 27, False) 

 

port = sys.argv[1] 

pulseWidth = 5 

portNum = 4 

if port == "port04": 

    portNum = 17 

if port == "port17": 

    portNum = 27 

if port == "port27": 

    portNum = 7 

print( 'Active port = ' + str(portNum) ) 

 

if (portNum == 4 or portNum == 17 or portNum == 27): 

    i = 1 

else: 

    i = 4 

#print( str(i) ) 

while i < 2: 

    print( 'Generating pulse on port ' + str(portNum) ) 

    GPIO.output( portNum , True ) 

    sleep ( pulseWidth ) 

    GPIO.output( portNum, False) 

    sleep ( pulseWidth ) 

    i += 1 

    print( 'Done' ) 

GPIO.cleanup() 



Final Assembly 

• This is the final 
assembled view of the 
"Etherlux" web 
controlled power 
outlet box 
 

• Raspberry Pi with wi-fi 
adapter and other 
electroncis and relays 
are located inside the 
enclosure 
 

• Internal view is shown 
in next slide 

Switched internet 
controllable 
outlets (3x) 

Unswitched 
outlet 

Input power cord 
coonector 



Final Assembly (contd..) 

• Internal view of the "Etherlux" web controlled power outlet box 

Raspberry Pi JK Flip Flops, Xtors 

Outlet recptacles and 
relays are inside 
enclosure (not visible) 



Etherlux in Action 

Short demo coming up next - don't go away :-) 
 

• The demo will first show a set of simple on/off 
functionality moves 
 

• Then it will show the ability to strobe the 
outlets from a web page 
• In practice this functionality can be used to control 

the speed of a fan or the output of a room heater 


